Volume 4, Number 2 (2020)
Year Launched: 2016
Journal Menu
Previous Issues
Why Us
-  Open Access
-  Peer-reviewed
-  Rapid publication
-  Lifetime hosting
-  Free indexing service
-  Free promotion service
-  More citations
-  Search engine friendly
Contact Us
Email:   service@scirea.org
Home > Journals > SCIREA Journal of Metallurgical Engineering > Archive > Paper Information

On the Low Tensile Ductility at Room Temperature in High Temperature Titanium Alloys

Volume 4, Issue 2, April 2020    |    PP. 16-51    |PDF (699 K)|    Pub. Date: December 3, 2020
156 Downloads     781 Views  

Ramachandra Canumalla, 30964 Tanglewood drive, Novi, MI 48377, USA

Several reviews have been written on various classes of titanium alloys including the high temperature titanium alloys. However, there is a gap in comprehensively putting together the research efforts on this important topic of low tensile ductility at room temperature in this class of high temperature titanium alloys used for critical applications in aeroengines. Thus, this review is aimed at bridging this gap. These alloys are designed based on exhausting the solid solubility of the alloying elements (mainly Al, Sn, Zr, Si) in titanium to improve the high temperature properties. Microstructural changes like precipitation of silicides and/or Ti3Al have been observed in these alloys depending upon their composition, thermomechanical processing, heat treatment and long exposures to service conditions. Several investigations have reported very low tensile ductility at room temperature in these alloys under certain conditions. This has been mainly attributed to either due to “silicides” or “silicides aided by Ti3Al” or “Ti3Al exacerbated by silicides” or “Ti3Al” and surface oxidation at the upper end of service temperatures. This low ductility is very pronounced in the lamellar than in the bimodal microstructures when silicides or Ti3Al or both occur. When Ti3Al precipitates are small (≤ ~6nm) and/or precipitation is only in the primary α in the bimodal microstructures, the impact on tensile ductility is very negligible. Alloy design and designing heat treatments are the methods found to be helping to mitigate the reduction in tensile ductility by either avoiding or controlling their size, volume fraction and location of the embrittling phases namely silicides and Ti3Al. Protective coatings are helping in reducing oxidation and help in avoiding the drop in tensile ductility. More research is required in these areas of alloy design, thermomechanical processing and coatings and also in optimizing the various conflicting requirements in these high temperature titanium alloys.

titanium alloys; silicides; Ti3Al; ductility, microstructure, alpha case, embrittlement, coatings

Cite this paper
Ramachandra Canumalla, On the Low Tensile Ductility at Room Temperature in High Temperature Titanium Alloys, SCIREA Journal of Metallurgical Engineering. Vol. 4 , No. 2 , 2020 , pp. 16 - 51 .


[ 1 ] D. Eylon, S. Fujishiro, P. J. Postans, F.H. Froes, High-temperature titanium alloys—a review, Journal of Metals: 1 (1984) 55-62. https://link.springer.com/article/10.1007/BF03338617
[ 2 ] C. Ramachandra, V. Singh , P. Rama Rao, On silicides in high temperature Ti alloys, Defense Science Journal: 36 (1986) 207-220. DOI: https://doi.org/10.14429/dsj.36.5972
[ 3 ] R.R. Boyer, J.A. Hall, Microstructure – Property relationships in titanium alloys (Critical review), Titanium 92 (1993) 77-88. https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP1992-VOL1/1992_Vol.1-2-Y-Microstructur.pdf
[ 4 ] A.K. Singh, C. Ramachandra, Characterization of silicides in high temperature titanium alloys, Journal of Materials Science: 32 (1997) 229-234. https://link.springer.com/article/10.1023%2FA%3A1018516324856
[ 5 ] A.K. Gogia, High-temperature titanium alloys, Defense Science Journal: 55 (2005) 149–173. DOI: https://doi.org/10.14429/dsj.55.1979
[ 6 ] Y. Kosaka, S.P. Fox Creep properties of near alpha titanium alloys at elevated temperatures higher than 600°C, Ti-2007 Science and Technology, M. Ninomi, A. Akiyama, M. Ikeda, M. Hagiwara, K. Maruyama (Eds.), The Japan Institute of Metals, (2007) pp. 255-258. https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP2007-VOL1/2007_Vol_1_Pres_54.pdf
[ 7 ] M. Nageswara Rao, Materials for gas turbines – An overview, in Book on Advances in Gas Turbine Technology intechopen.com. (2011) pp. 293 -314. DOI: 10.5772/20730
[ 8 ] C. Veiga , J.P. Davim, A.J.R. Loureiro, Properties and applications of titanium alloys: A brief review, Reviews on Advanced Materials Science: 32 (2012) 133-148. https://www.semanticscholar.org/paper/PROPERTIES-AND-APPLICATIONS-OF-TITANIUM-ALLOYS%3A-A-Veiga/6ea2f8d570db70dc91faec223e15596863482f3d
[ 9 ] J. Foltz, M. Gram, Introduction to titanium and its alloys, ASM Handbook, Volume 4E, Heat Treating of Nonferrous Alloys G.E. Totten and D.S. MacKenzie, (Eds.) (2016) DOI: 10.31399/asm.hb.v04e.a0006253
[ 10 ] X. Liu, S. Chen, J.K.H. Tsoi, J.P. Matinlinna, Binary titanium alloys as dental implant materials—a review, Regenerative Biomaterials (2017) 315–323. doi: 10.1093/rb/rbx027
[ 11 ] R.P. Kolli, A. Devaraj, A review of metastable beta titanium alloys, Metals: 8, 506 (2018) 1-41. doi:10.3390/met8070506
[ 12 ] L.M. Kang, C. Yang, A review on high-strength titanium alloys: Microstructure, Strengthening, and Properties, Advanced Engineering Materials.: 21, (2019) 1801359 (1-27). DOI: 10.1002/adem.201801359
[ 13 ] S. Bahl, S. Suwas, K. Chatterjee, Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials, International Materials Reviews: (2020). https://doi.org/10.1080/09506608.2020.1735829.
[ 14 ] J.C. Williams, R.R. Boyer, Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components, Metals: 10(6), 705 (2020) 1-22.  https://doi.org/10.3390/met10060705
[ 15 ] H.W. Rosenberg, Titanium Alloying in theory and practice, In: The Science, Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel (Eds.), Pergamon Press, New York, (1970) pp. 851-859. DOI:  10.1016/B978-0-08-006564-9.50095-6
[ 16 ] Y. Imbert, Creep resistance and embrittlement of a Ti-6%Al-5%Zr-l%W-0.4% Si alloy, J of Less-Common Metals: 37 (1974) 71-89. https://doi.org/10.1016/0022-5088(74)90008-3
[ 17 ] M. Young, E. Levine, H. Margolin, Age hardening of α-β Ti-6Al-2Sn-4Zr-6Mo, Metallurgical Transactions: A10 (1979) 359-365.
[ 18 ] D. Banerjee, D. Mukherjee, R.L. Saha, K. Bose, Microstructure and tensile ductility in a β heat treated titanium alloy, Metallurgical Transactions: A14 (1983) 413-420. https://link.springer.com/article/10.1007/BF02644219
[ 19 ] C. Ramachandra, V. Singh, Precipitation of the ordered Ti3Al in Alloy Ti-6.3Al-2Zr-3.3Mo-0.30Si, Scripta Metallurgica: 20 (1986) 509-512. DOI: 10.1016/0036-9748(86)90244-9
[ 20 ] W.T. Donlon, J.E, Allison, J.V. Lasecki, The influence of thermal exposure on properties and Microstructure of elevated temperature titanium alloys, Titanium 92 – Science and Technology, F.H. Froes and I Caplan (Eds), The Minerals, Metals & Materials Society: (1993) p. 295. https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP1992-VOL1/1992_Vol.1-2-J1-The_Influenc.pdf
[ 21 ] C. Ramachandra, A. K. Singh, G.M.K. Sarma, Microstructural characterization of near alpha Ti alloy Ti-6Al-4Sn-4Zr-0.70Nb-0.5Mo-0.40Si, Metallurgical Transactions: A24 (1993) 1273-1280.   10.1007/BF02668196
[ 22 ] C. Ramachandra, A.K. Singh, Age hardening behavior of Ti alloy Ti-6Al-5Zr-0.5Mo-0.25Si, Metallurgical Transactions: A24 (1993) 763-765.  10.1007/BF02656646
[ 23 ] J. Liu, S. Li, D. Li, R. Yang, Effect of aging on fatigue-crack growth behavior of a high temperature titanium alloy, Materials Transactions (Japan Institute of Metals): 45 (2004) 1577-1585, https://www.jim.or.jp/journal/e/pdf3/45/05/1577.pdf
[ 24 ] J. Li, J. Cai, Y. Xu, W. Xiao, X. Huang, C. Ma, Influences of thermal exposure on the microstructural evolution and subsequent mechanical properties of a near-α high temperature titanium alloy, Materials Science and Engineering: A 774 (2020) 138934; https://doi.org/10.1016/j.msea.2020.138934
[ 25 ] A.A. Popov, N. Rossina, M. Popova, The effect of alloying on the ordering processes in near alpha titanium alloys, Materials Science and Engineering: A 564 (2013) 284-287. https://doi.org/10.1016/j.msea.2012.11.043
[ 26 ] W.P. Fentiman, R.E. Goosey, R.T.J. Hubbard, M.D. Smith, Exploitation of a simple alpha titanium alloy base in the development of alloys of Diverse Mechanical Properties, The Science, Technology and Application of Titanium, Pergamon Press, (1970) pp. 987-99, DOI:  10.1016/B978-0-08-006564-9.50110-X
[ 27 ] M.R. Winstone, R.D. Rawlings, D.R.F. West, The creep behavior of some silicon containing titanium alloys, Journal of Less Common Metals: 39 (1975) 205-217. https://doi.org/10.1016/0022-5088(75)90195-2
[ 28 ] N.E. Paton, M.W. Mahoney, Creep of titanium-silicon alloys, Metallurgical Transactions: A 7 (1976) 1685-94. https://link.springer.com/article/10.1007/BF02817886
[ 29 ] M.W. Mahoney, N.E. Paton, Fatigue and fracture characteristics of silicon-bearing titanium alloys, Metallurgical Transactions: A 9 (1978) 1497-1501. https://link.springer.com/article/10.1007/BF02661828
[ 30 ] A.T.K. Assadi, H.M. Flower, D.R.F. West, Microstructure and strength of alloys of the Ti–Al–Zr–Mo–Si system, Metals Technology: 6 (1979) 8-15. https://doi.org/10.1179/030716979803276282
[ 31 ] A.T.K. Assadi, H.M. Flower, D.R.F. West, Creep resistance of certain alloys of the Ti-AI-Zr-Mo-Si system, Metals Technology: 6 (1979) 16-23. https://doi.org/10.1179/030716979803276651
[ 32 ] M.T. Cope, M.J. Hill, The influence of aging temperature on the mechanical properties of IMI 834, 6th World Conference on Titanium, France, (1988) pp. 153-158. https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP1988-VOL1/1988_Vol.1-2-X-The_Influence.pdf
[ 33 ] B. Borchert, M.A. Daeubler, Influence of microstructure of IMI 834 on mechanical properties relevant to jet engines, Sixth World Conference on Titanium, France, (1988) pp. 467-473. https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP1988-VOL1/1988_Vol.1-3-Influence_of_Mi.pdf
[ 34 ] A.L. Dowson, A.C. Hollis, C.J. Beevers, The effect of alpha-phase volume fraction and stress-ratio on the fatigue crack growth characteristics of the near alpha IMI 834 Ti alloy, International Journal of Fatigue: 4 (1992) 261-70. https://doi.org/10.1016/0142-1123(92)90010-A
[ 35 ] P. Ghosal, R. Prasad, C. Ramachandra, Microstructural stability of the (+) solution treated and quenched near – Ti alloy IMI 834, Metallurgical and Materials Transactions: A26 (1995) 2751-2755.
[ 36 ] D.F. Neal, S.P. Fox, The influence of silicides on the properties of near-alpha titanium alloys, In: Froes FH, Caplan I, (Eds), Titanium’92 science and technology. Warrendale, PA: TEM; (1993) pp. 287–294. https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP1992-VOL1/1992_Vol.1-2-I1-The_Influenc.pdf
[ 37 ] A.H. Rosenberger, A. Madsen, H. Ghonem, Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100, Journal of Materials Engineering and Performance: 4 (1995) 182–187. https://link.springer.com/article/10.1007/BF02664112
[ 38 ] M. Es-souni, Creep behavior and creep microstructures of a high-temperature titanium alloy Ti-5.8Al-4.0Sn-3.5Zr-0.7Nb-0.35Si-0.06C (Timetal 834): Part I. Primary and steady-state creep, Materials Characterization: 46 (2001) 365–379. https://doi.org/10.1016/S1044-5803(01)00136-X
[ 39 ] M.J. Bermingham, S.D. Mcdonald, M.S. Dargusch, D.H. Stjohn, The mechanism of grain refinement of titanium by silicon, Scripta Materialia: 58 (2008) 1050–1053. https://doi.org/10.1016/j.scriptamat.2008.01.041
[ 40 ] A.M. Popova, A.A. Popov, TTT-Diagram of intermetallic phases formation in heat-resistant titanium alloys, Materials Science Forum: 907 (2017) 67-73, ISSN: 1662-9752, doi: 10.4028/www.scientific.net/MSF.907.67
[ 41 ] D. Eylon, J.A. Hall, C.M. Pierce, D.L. Ruclle, Microstructure and mechanical properties relationships in the Ti-11 alloy at room and elevated temperatures, Metallurgical Transactions: A 7 (1976) 1817- 1826. https://link.springer.com/article/10.1007/BF02659811
[ 42 ] M. A. Blenkinsop, Titanium science and technology. 111 Proceedings of the 5'" International Conference on Titanium, Munich, Germany, 10-14 September 1984, G. Lutjering, U. Zwicker, W. Bunk, (Eds.), Deutsche Gesselschaft fur Metallkunde, Oberursel, (1985) pp. 2323-338.
[ 43 ] C. Andres, A. Gysler, G. Lutjering, Correlation between microstructure and creep behavior of the High temperature Ti Alloy IMI 834, 7th World Conference on Titanium, San Diego, California, June 28 – July 2, 1992, (1993) pp. 311-318. https://inis.iaea.org/search/search.aspx?orig_q=RN:28046455
[ 44 ] J.P. Hirth, F.H. Froes, Interrelationships between fracture toughness and other mechanical properties in titanium alloys, Metallurgical Transactions: A 8 (1977) 1165-1176. https://link.springer.com/article/10.1007/BF02667402
[ 45 ] D. Eylon, J.A. Hall, Fatigue behavior of beta processed titanium alloy IMI 685, Metallurgical Transactions: A 8 (1977) 981-990. https://link.springer.com/article/10.1007/BF02661583
[ 46 ] M. Peters, Y.T. Lee, K.J. Grundhoff, H. Schurmann, G. Welsch, Influence of processing on microstructure and mechanical properties of Ti-1100 and IMI 834, The Minerals Metals Society, (1991) pp. 533-548.
[ 47 ] D.F. Neal, Development and evaluation on high temperature titanium alloy IMI 834, Proceedings of the 6th World Conference on Titanium, France, 6-9 June 1988; P. Lacombe, R. Tricot, and G. Beranger (Eds.), Les editions de Physique, Les Ulis Cedex, France, (1988) pp. 253-258.
[ 48 ] H.M. Flower, P.R. Swann, D.R.F. West, Silicide precipitation in the Ti-Zr-Al-Si System, Metallurgical Transactions: B 2 (1971) 3289-3297. https://doi.org/10.1007/BF02811609
[ 49 ] F. Barbier, C. Servant, C. Quesne, M.P. Lacombe, Etude des siliciures de titanezirconium dans lalliage Ti 685. Journal of Microsc et spectrosc Electron: 6 (1981) 299-310. (In FRENCH) https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL8130523903
[ 50 ] C. Ramachandra, V. Singh, Silicide precipitation in alloy Ti-6Al-5Zr-0.5Mo-0.25Si, Metallurgical Transactions: A 13 (1982) 771–775. https://link.springer.com/article/10.1007/BF02642390
[ 51 ] C. Ramachandra, V. Singh, Silicide phases in some complex titanium alloys. Metallurgical Transactions: A 23 (1992) 689-690. https://link.springer.com/article/10.1007/BF02801186
[ 52 ] A. K. Singh, C. Ramachandra, M. Tavafoghi, V. Singh, Microstructure of solution treated, quenched and aged / Ti Alloy Ti-6Al-1.6Zr-3.3Mo-0.30Si, Journal of Alloys and Compounds: 179 (1992) 125-135. DOI: 10.1016/0925-8388(92)90211-Q
[ 53 ] G. McIntosh, T.N. Baker, Composition of silicide phase in near-alpha titanium alloys, Phase Transform. 87: Proc. Conf. Metal. Sci. Comm. Inst. Metals, Cambridge, 6-10 July. London, (1988) pp. 115-118.
[ 54 ] A. K. Singh, T. Roy, C. Ramachandra, Microstructural stability on long term aging of an (alpha+Beta) Ti alloy Ti-6.3Al-1.6Zr-3.3Mo-0.30Si, Metallurgical Transactions: A 27 (1996) 1167-1173. https://link.springer.com/article/10.1007/BF02649855
[ 55 ] C. Ramachandra, V. Singh, Effect of silicide precipitation on tensile properties and fracture of alloy Ti-6Al-5Zr-0.5Mo-0.25Si, Metallurgical Transactions: A16 (1985) 227–231. https://link.springer.com/article/10.1007/BF02816049
[ 56 ] C. Ramachandra, V. Singh, Effect of silicides on tensile properties and fracture of alloy Ti-6Al-5Zr-0.5Mo-0.25Si from 300 to 823K, Journal of Materials Science: 23(1988) 835–841.  DOI:10.1007/BF02816049 
[ 57 ] C. Ramachandra, V. Singh, Effect of thermomechanical treatments on size and distribution of silicides and tensile properties of alloy Ti-6AI-5Zr-0.5Mo-0.25Si, Metallurgical Transactions: A 19 (1988) 389-91. https://link.springer.com/article/10.1007/BF02652553
[ 58 ] G. Sridhar, D.S. Sarma, Structure and properties of a near-alpha titanium alloy after beta solution treatment and aging at 625 C, Metallurgical Transactions: A 19 (1988) 3025-3033. https://link.springer.com/article/10.1007/BF02647729
[ 59 ] G. Sridhar, D.S. Sarma, Structure and properties of a β solution treated, quenched, and aged si-bearing near-α titanium alloy. Metallurgical Transactions: A 20 (1989) 55–62. https://link.springer.com/article/10.1007/BF02647493
[ 60 ] G. Sridhar, D.S. Sarma, On the influence of microstructure on the room temperature deformation behavior of a near – α titanium alloy, Metallurgical Transactions: A 22 (1991) 1123-25. https://link.springer.com/article/10.1007/BF02661108
[ 61 ] A.P. Woodfield, P.J. Postans, M. Loretto, R. Smallman, The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti- 5331S, Acta Metallurgica: 36 (1988) 507–515. https://doi.org/10.1016/0001-6160(88)90082-X
[ 62 ] A. Madsen, H. Ghonem, Separating the effects of T3Al and silicide precipitates on the tensile and crack growth behavior at room temperature and 593C in a near-alpha titanium alloy, Journal of Materials Engineering and Performance: 4 (1995) 301-307. https://link.springer.com/article/10.1007/BF02649067
[ 63 ] A. Madsen, H. Ghonem, Effects of aging on the tensile and fatigue behavior of the near-α Ti-1100 at room temperature and 593°C, Materials Science and Engineering: A177 (1994) 63–73, https://doi.org/10.1016/0921-5093(94)90478-2
[ 64 ] A. Madsen, E. Andrieu, H. Ghonem, Microstructural changes during aging of a silicon bearing near-alpha titanium alloy, Materials Science and Engineering: A171 (1993) 191-197. https://doi.org/10.1016/0921-5093(93)90406-5
[ 65 ] W. Cui, W. Bian, G. Luo, Q. Hong, L. Zhou, Effect of thermal exposure on the microstructures and tensile properties of high temperature Ti alloy IMI834, Journal of Aeronautical Materials: 17 (1997) 15-20. URL: http://jam.biam.ac.cn/EN/     OR     http://jam.biam.ac.cn/EN/Y1997/V17/I4/15
[ 66 ] J.M. Cai, X. Huang, C. Cao, J-M Ma, Microstructural evolution of near alpha Ti alloy during long term high temperature exposure and its influence on thermal stability, J of Aeronautical Materials: 30 (2010) 11-18. URL: http://jam.biam.ac.cn/EN/     OR     http://jam.biam.ac.cn/EN/Y2010/V30/I1/11
[ 67 ] K.V.S. Srinadh, S. Nidhi, V. Singh, Role of Ti3Al/Silicides on tensile properties of Timetal 834 at various temperatures, Bulletin of Materials Science 30 (2007) 595-600. https://link.springer.com/article/10.1007%2Fs12034-007-0094-6
[ 68 ] W. Jia, W. Zeng, H. Yu, Effect of aging on the tensile properties and microstructures of a near-alpha titanium alloy, Materials and Design: 58 (2014) 108–115. http://dx.doi.org/10.1016/j.matdes.2014.01.063
[ 69 ] W. Jia, W. Zeng, J. Liu, Y. Zhou, Q. Wang, Influence of thermal exposure on the tensile properties and microstructures of Ti60 titanium alloy, Materials Science and Engineering: A 530 (2011) 511-518. doi:10.1016/j.msea.2011.10.011
[ 70 ] W.J. Zhang, X-Y. Song, S-X. Hui, W-J. Ye, Y., Yu, Y-F. Li, α2 phase precipitation behavior and tensile properties at room temperature and 650 °C in an (α + β) titanium alloy. Rare Metals, (2019) https://doi.org/10.1007/s12598-019-01334-y
[ 71 ] J. Zhang, N. Peng, Q. Wang, X. Wang, A new aging treatment way for near α high temperature titanium alloys, Journal Materials Science and Technology: 25 (2009) 454-458. https://www.jmst.org/CN/Y2009/V25/I04/454
[ 72 ] P. Narayana, S.W. Kim, J.K. Hong, N. Reddy, J.T. Yeom, Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650° C, Materials Science and Engineering: A718 (2018) 287–291, https://doi.org/10.1016/j.msea.2018.01.113
[ 73 ] C. Leyens, M. Peters, D. Weinem, W.A. Kaysser, Influence of long-term annealing on tensile properties and fracture of near-α titanium alloy Ti-6Al-2.75Sn-4Zr-0.4Mo-0.45Si, Metallurgical and Materials Transactions: A 27 (1996) 1709-1717. DOI:  10.1007/BF02649829
[ 74 ] S. Guan, Q. Kang, Q. Wang, Y. Liu, D. Li, Influence of long-term thermal exposure on tensile properties of a high-temperature titanium ally Ti-55, Materials Science and Engineering: A 243 (1998) 182-185. https://doi.org/10.1016/S0921-5093(97)00798-3
[ 75 ] K. V. S. Srinadh, V. Singh, Oxidation behavior of the near alpha titanium alloy IMI834, Bulletin of Materials Science: 27 (2004) 347–354. https://link.springer.com/article/10.1007/BF02704771
[ 76 ] H. Guleryuz, H. Cimenoglu, Oxidation of Ti–6Al–4V alloy, Journals of Alloys and Compounds: 472 (2009) 241–246. https://doi.org/10.1016/j.jallcom.2008.04.024
[ 77 ] H. Garbac, M. Lewandowska. Microstructural changes during oxidation of titanium alloys, Materials Chemistry and Physics: 81 (2003) 542–547. https://doi.org/10.1016/S0254-0584(03)00070-1
[ 78 ] T. Kitashima, T. Kawamura, Prediction of oxidation behavior of near -α titanium alloys, Scripta Materialia: 124 (2016) 56-58. https://doi.org/10.1016/j.scriptamat.2016.06.044
[ 79 ] I. Gurappa, Platinum aluminide coatings for oxidation resistance of titanium alloys, Platinum Metals Review: 45 (2001) 124-129. https://www.osti.gov/etdeweb/biblio/20225303
[ 80 ] I. Gurappa, A.K. Gogia, Development of oxidation resistant coatings for titanium alloys, Materials Science and Technology: 17 (2001) 581-587. Published online: 19 Jul 2013 https://doi.org/10.1179/026708301101510249
[ 81 ] C.F. Yolton, F.H. Froes. R.F. Malone, Alloying element effects in metastable beta titanium alloys, Metallurgical Transactions: A10 (1979) 132-134. https://link.springer.com/article/10.1007%2FBF02686421
[ 82 ] F.H. Froes, J.C. Chesnutt, J.C. Rhodes, J.C. Williams, Relationship of fracture toughness and ductility to microstructure and fractographic features in advanced deep hardenable Ti alloys, In Toughness and fracture behavior of titanium, ASTM, (1978) pp.115-53. ASTM-STP-651. https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP26541S.htm; DOI: 10.1520/STP26541S