An effective method for high purity genomic DNA extraction from N. flagelliforme

Volume 1, Issue 2, December 2016     |     PP. 169-185      |     PDF (576 K)    |     Pub. Date: December 26, 2016
DOI:    392 Downloads     4847 Views  

Author(s)

Wen-Jin Ma, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; The Institute of Gansu Province Light Industrial Scientific Research, Lanzhou 730000, China
Xue-Feng Chen, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
Wen-Jin Lou, Gansu Provincial Academic Industrial for Medical Research, Lanzhou 620100, China
Huan Liu, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
Bo Wang, The Institute of Gansu Province Light Industrial Scientific Research, Lanzhou 730000, China
Qian Wu, Gansu Provincial Academic Industrial for Medical Research, Lanzhou 620100, China
Yu Zhao, The Institute of Gansu Province Light Industrial Scientific Research, Lanzhou 730000, China
Tao Peng, The Institute of Gansu Province Light Industrial Scientific Research, Lanzhou 730000, China
Peng Chen, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, PR China

Abstract
An effective method for high purity genomic DNA extraction from N. flagelliforme, which was four steps including 1) the obtaining of pure cultured cells of N. flagelliforme by liquid culture, 2) the cleaning of cells by the cleaning solution, 3) disruption of cell walls by the glass homogenizer, and 4) precipitation of polysaccharide and protein and other interfering substance. The comparison with bacterial DNA extraction kit clearly indicates that the quality of DNA with the OD260/OD280 ratio of 1.8, and the gel electrophoresis analysis revealed high quality and high yield of genomic DNA extracted by this method. Furthermore, the new method is also useful for other cyanobacterial DNA isolation. The method does not require lysozyme, phenol extraction, and the genomic DNA of N. flagelliforme thus extracted by this method is of high quantity as well as quality and can further be used directly for PCR amplification and genetic recombination.

Keywords
N. flagelliforme; Genomic DNA extraction; Effective method; Agarose gel electrophoresis; PCR verification

Cite this paper
Wen-Jin Ma, Xue-Feng Chen, Wen-Jin Lou, Huan Liu, Bo Wang, Qian Wu, Yu Zhao, Tao Peng, Peng Chen, An effective method for high purity genomic DNA extraction from N. flagelliforme , SCIREA Journal of Agriculture. Volume 1, Issue 2, December 2016 | PP. 169-185.

References

[ 1 ] Gao, K. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. Jappl Phycol. 1998; 10: 37-49.
[ 2 ] Kanekiyo, K., Lee, J.-B., Hayashi, K., Takenaka, H., Hayakawa, Y., Endo, S. and Hayashi, T. Isolation of an Antiviral Polysaccharide, Nostoflan, from a Terrestrial Cyanobacterium, Nostoc flagelliforme. Jnat Prod. 2005; 68: 1037-1041.
[ 3 ] You, Y. Impact of the Nostoc flagelliforme trade on the ecoenvironment of the Inner Mongolia pasture and some policy suggestions. Arid Land Geogr. 2000; 23: 279–283.
[ 4 ] Tseng, C. Algal biotechnology industries and research activities in China. Jappl Phycol. 2001; 13: 375-380.
[ 5 ] Yu, Z. Ion beam application in genetic modification. Ieee T Plasma Sci. 2000; 28: 128-132.
[ 6 ] Vilaithong, T., Yu, L., Alisi, C., Phanchaisri, B., Apavatjrut, P. and Anuntalabhochai, S. A study of low-energy ion beam effects on outer plant cell structure for exogenous macromolecule transferring. Surf Coat Tech. 2000; 128: 133-138.
[ 7 ] Nakagawa, T., Tanaka, T., Niwa, D., Osaka, T., Takeyama, H. and Matsunaga, T. Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J Biotechnol. 2005; 116: 105-111.
[ 8 ] Robertson, N. and Leek, R.. In Breast Cancer Research Protocols. Springer. 2006; 61-63.
[ 9 ] McOrist, A. L., Jackson, M. and Bird, A. R. A comparison of five methods for extraction of bacterial DNA from human faecal samples. J Microbiol Meth. 2002; 50: 131-139.
[ 10 ] England, L., Pollok, J., Vincent, M., Kreutzweiser, D., Fick, W., Trevors, J. and Holmes, S. Persistence of extracellular baculoviral DNA in aquatic microcosms: extraction, purification, and amplification by the polymerase chain reaction (PCR). Mol Cell Probe. 2005; 19: 75-80.
[ 11 ] Hu, Z., Zeng, X., Wang, A., Shi, C. and Duan, D. An efficient method for DNA isolation from red algae. J Appl Phycol. 2004; 16: 161-166.
[ 12 ] Cheng, H.-R. and Jiang, N. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett. 2006; 28: 55-59.
[ 13 ] Fiore, M. F., Moon, D. H., Tsai, S. M., Lee, H. and Trevors, J. T. Miniprep DNA isolation from unicellular and filamentous cyanobacteria. J Microbiol Meth. 2000; 39: 159-169.
[ 14 ] Billi, D., Caiola, M. G., Paolozzi, L. and Ghelardini, P. A method for DNA extraction from the desert cyanobacterium Chroococcidiopsis and its application to identification of ftsZ. Appl Environ Microb. 1998; 64: 4053-4056.
[ 15 ] Morin, N., Vallaeys, T., Hendrickx, L., Natalie, L. and Wilmotte, A. An efficient DNA isolation protocol for filamentous cyanobacteria of the genus Arthrospira. J Microbiol Meth. 2010; 80: 148-154.
[ 16 ] Saha, S. K., Uma, L. and Subramanian, G. An Improved Method for Marine Cyanobacterial DNA Isolation. World J Microb Biot. 2005; 21: 877-881.
[ 17 ] Singh, S. P., Rastogi, R. P., Häder, D.-P. and Sinha, R. P. An improved method for genomic DNA extraction from cyanobacteria. World J Microb Biot. 2010; 27: 1225-1230.
[ 18 ] Mazur, B. J., Rice, D. and Haselkorn, R. Identification of blue-green algal nitrogen fixation genes by using heterologous DNA hybridization probes. P Natl Acad Sci. 1980; 77: 186-190.
[ 19 ] Kallas, T., Rebiere, M., Rippka, R. and De Marsac, N. T. The structural nif genes of the cyanobac-teria Gloeothece sp. and Calothrix sp. share homology with those of Anabaena sp., but the Gloeo-thece genes have a different arrangement. J Bacteriol. 1983; 155: 427-431.
[ 20 ] Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A. and Allard, R. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. P Natl Acad Sci. 1984; 81: 8014-8018.
[ 21 ] Jia, S.-R., Su, J.-Y. and Qiao, C.-S. Nostoc flagelliforme cells cultivation and its products. Chinese patent ZL03119101.0. 2005.
[ 22 ] Su, J., Jia, S., Chen, X. and Yu, H. Morphology, cell growth, and polysaccharide production of Nostoc flagelliforme in liquid suspension culture at different agitation rates. J Appl Phycol. 2007; 20: 213-217.
[ 23 ] Liu, X.-J. and Chen, F. Cell differentiation and colony alteration of an edible terrestrial cyanoba-cteriumNostoc flagelliforme, in liquid suspension cultures. Folia microbiol. 2003; 48: 619-626.
[ 24 ] Mazor, G., Kidron, G. J., Vonshak, A. and Abeliovich, A. The role of cyanobacterial exopolysac-charides in structuring desert microbial crusts. FEMS microbiology ecology. 1996; 21: 121-130.
[ 25 ] Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G. and Jones, J. D. Molecular genetics of plant disease resistance. SCIENCE-NEW YORK THEN WASHINGTON-. 1995; 661-661.
[ 26 ] Feurer, C., Irlinger, F., Spinnler, H., Glaser, P. and Vallaeys, T. Assessment of the rind microbial diversity in a farmhouse‐produced vs a pasteurized industrially produced soft red‐smear cheese using both cultivation and rDNA‐based methods. J Appl Microbiol. 2004; 97: 546-556.
[ 27 ] Möller, E., Bahnweg, G., Sandermann, H. and Geiger, H. A simple and efficient protocol for isola-tion of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 1992; 20: 6115.
[ 28 ] Liu, G., Fan, C., Zhong, J., Zhang, L., Ding, S., Yan, S. and Han, S. Using hexadecyl trimethyl ammonium bromide (CTAB) modified clays to clean the Microcystis aeruginosa blooms in Lake Taihu, China. Harmful Algae. 201; 9: 413-418.