Volume 1, Number 1 (2016)
Year Launched: 2016
Journal Menu
Archive
Previous Issues
Why Us
-  Open Access
-  Peer-reviewed
-  Rapid publication
-  Lifetime hosting
-  Free indexing service
-  Free promotion service
-  More citations
-  Search engine friendly
Contact Us
Email:   service@scirea.org
Home > Journals > SCIREA Journal of Biology > Archive > Paper Information

Mitoplastide genome and origine of mitochondria and chloroplast in plants

Volume 1, Issue 1, October 2016    |    PP. 49-65    |PDF (353 K)|    Pub. Date: December 1, 2016
1305 Downloads     12674 Views  

Author(s)
Milanko STUPAR, Institut for Nuclear Science Vinca, Beograd, Srbija.
Slavica STEFANOVIC, Institut for Nuclear Science Vinca, Beograd, Srbija.

Abstract
All extant photosynthetic organisms descend from a primeval photosynthetic operon of the single evolutionary line of cells. This hypothesis proposed existence of mitoplastide genome in the aerobic oxygen non-producing proto-eukaryot. This genome is composed of whole mitochondrial replicon and photosynthetic gene cluster surrounded by membrane. Development of water spliting-PSII superoperon in plants, is a results of mitoplastide genome duplication and gene's function replacement. After both events, mitoplastide genome contain two functionaly polarized replicons (mitochondrial and plastid's). The origin of mitochondrion and chloroplast occured in three steps. First, a replication fork pauses and collapsed, generating a break in the mitoplastide genome. Second, the double-strand break was repaired by complementary strands invasion. Third, this duplicated genome was segregated into two compartments by reciprocal genetic recombination. Simultaneous, with genetic recombination, fission of the mitoplastide membrane formed two compartments, mitochondrial and plastid’s.

Keywords
origin of mitochondrion and chloroplast in plants

Cite this paper
Milanko STUPAR, Slavica STEFANOVIC, Mitoplastide genome and origine of mitochondria and chloroplast in plants, SCIREA Journal of Biology. Vol. 1 , No. 1 , 2016 , pp. 49 - 65 .

References

[ 1 ] BALIGA, N., R. Bonneau, M.T. Facciotti, M. Pan, G. Glusman, E.W. Deutsch et. al. 2005. Genome sequence of : Haloarcula marismortui : A halophilic archaeon from the Dead Sea. Genome Res. 14, 2221-2234.
[ 2 ] BLANKENSHIP R.E. and H. Hartman. 1998. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23, 94-97.
[ 3 ] BLANKENSHIP R.E. 2001. Molecular evidence for the evolution of photosyntehsis. Trends in Plant Sci. 6, 4-6.
[ 4 ] BURKE D.H., Hearst J.E. and Sidow A. 1993. Early evolution of photosynthesis: Clues from nitrogenase and chlorophyll iron proteins. Proc. Natl. Acad. Sci. USA. 90, 7134-7138.
[ 5 ] CASTRESANA J., M. Luben, M. Saraste and D.G. Higgins. 1994. Evolution ofcytochrome oxidase, an enzyme older than atmospheric oxygene. EMBO J. 13, 2516-2526.
[ 6 ] CAVALIER-SMITH T. 2001. Obcells as proto-organisms: Membrane heredity, lithophosphorylation, and the origin of the genetic code, thwe first cells, and photosynthesis. J. Mol. evolution 53, 555-595.
[ 7 ] CHIEN Y.T. and S.H. Zinder 1996. Cloning, functional organization, transcript studies and phylogenetic analysis of the complete nitrogenase structural genes (nif HDK2) and associated genes in the archaeon Methanosarcina bekeri. J. Bacteriology 178, 143-148.
[ 8 ] DEBUS R.J. 1992. Manganese and calcium ions of photosynthetic oxygen evolution. Biochim. Biophys. Acta 1102, 269-352.
[ 9 ] DEHAL P and Boore JL 2005. Two round of whole genome duplication in the ancestral vertebrate. PloS Biol. 3 (10): e314.
[ 10 ] EISEN J.A., Nelson E. Karen, Paulsen I.T. Heidelberg J.F., Wu M., Dodson R.J., Deboy R., 2002. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. PNAS, 99, 14, 9509-9514.
[ 11 ] ESPOSITI M.D., Flamini Emanuela and Zannoni D., 1985. Functional characterization and partial purification of the ubiquinol-cytochrome c oxidoreductase from higher plant. Plant Physiol. 77, 758-764.
[ 12 ] ESTHER- MALITZ. 2002. Die sauerstoffabhangige coproporphyrinogen III oxidase (hem F) aus Escherichia coli. Dissertation, Berlin, Germany.
[ 13 ] FUJUTA Y., Y. Takahashi, M. Chuganji and H. Matsubara. 1992. The nifH-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum. Plant and Cell Physiology, 33, 181-192.
[ 14 ] FUTTERER O., Angelov A., Liesegang H.,Gottschalk G., Schleper C., Schepers B., Dock C., Antranikian G., and Liebl W. 2004. Genome sequence of Picrophilus torridus and its implications for life around pH O. PNAS 101, 24, 9091-9096.
[ 15 ] GREEN B.R. 2003, in Light-harvesting antennas in photosynthesis, eds Green B.R., Parson W.W. (Kluwer, Dordecht, The Netherlands), pp 129-168.
[ 16 ] das GUPTA J., R.T. Willigen and G.C. Dismukes. 2004. Consequences of structural and biophysical studies for the molecular mechanism of photosynthetic oxygen evolution: functional roles for calcium and bicarbonate. Phys. Chem. Chem. Phys. 6, 4793-4802.
[ 17 ] HEMMI H., Takahashi Y., Shibuya K., Nakayama T. and Nishno T. 2005. Menaquinone-specific prenyl reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Bacteriology 187(6); 1937-1944.
[ 18 ] HIROKAZU H. 2003. The complete nucleotide sequence and RNA editing conttent of the mitochondrial genome of rapaseed (Brasica napus L): comparative analysis of the mitochondrial genomes of rapaseed and Arabidopsis thaliana. Nucleic Acid Res. 31 (20): 5907-5916.
[ 19 ] IWASAKI T., Wagaki T. and Oshma T. 1995. Resolution of the aerobic respiratory system of the thermoacidophilic archaeon Sulfolobus sp. strain 7. J. Biological Chemistry 270, 52, 30902-30908.
[ 20 ] JASCHE P.R. A. 2010. PhD thesis Discovery and characterization of a new zinc-bacteriochlorophyll biosynthetic pathway and photosystem in a magnesium-chelatase mutant. Germany, http:// hdl.handle.net/2429/2723
[ 21 ] KUFRYK G.I. and Vermaas W.F.J. 2003. Slr 2013 is a novel protein regulating functional assembly of photosystem II in Synechocystis sp. Strain PCC 6803. J. of Bacteriol. 185, 6615- 6623.
[ 22 ] LIANG M.-C., H. Hartman, J. Kirschvink and Y.L. Yung. 2006. Production of hydrogen peroxide in the atmosphere of a snowball Earth and the origin of oxygenic photosynthesis. Proc. Natl. Acad. Sci. 103, 18896-18899.
[ 23 ] MAITENA Jean, SAULDUBOA Audrey, MANSOT J-L and GROS O. 2011. A mesophilic thraumarchaeal species of the mangrove swamp of Guadelupe (F.W.I.). Poster Abstract GCFI:63, 507.
[ 24 ] MENG J., F. Wang, F.Wang, Y. Zheng, X. Peng, H. Zhou and X. Xioa. 2009. An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase. The ISME journal 3, 106-116.
[ 25 ] MULKIDJANIAN A.Y., Koonin E.V., Makarova Kira S., Mekhedov S.L., Sorokin A., Wolf Y.I., Dufresne A., Partensky F., Burd H., Kaznadzey D., Haselkorn R., and Galperin M.Y. 2006. The cyanobacterial genome core and the origin of photosynthesis. PNAS (pnas.org/content/103/35/13126.full).
[ 26 ] OLSON J.M.1970. The evolution of photosynthesis. Sciene 108, 438-446.
[ 27 ] RIVAS de las J., Balsera Monica and Barber J. 2004. Evolution of the oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins. Trends in Plant Science 9, 1, 18-25.
[ 28 ] RODIONOV D.A., Vitreschak A.G., and Mironov A.A. and Gelfand M.S. 2003. Comparativ genomics of the vitamin B12 metabolism and regulation in prokaryotes. J. Biol. Chem. 278, 41148-41159.
[ 29 ] SCHMIDT C.L., Anemuller S., Teixeira M. and Schafer G. 1995. Purification and characterization of the Rieske iron-sulfur protein from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. FEBS Letters, 359, 2-3, 239-243.
[ 30 ] SCHUTZ M., Brugna M., Lebrun E., Baymann F., Huber R., et al 2000. Early evolution of cytochrome bc complexes. J. Mol. Biol. 300, 663-675.
[ 31 ] SODERBERG T. 2005. Biosynthesis of ribulose-5 phosphate and erythrose-4 phosphate in Archaea: a phylogenetic analysis of archaeal genomes. Archaea. 1. 347-352.
[ 32 ] SOFIA H.J., G. Chen, B.G. Hetzler, J.F. Reyes-Spindola and N.E. Miller. 2001. Radical SAM, a novel protein superfamily linkig unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097-1106.
[ 33 ] STUPAR M. 2006. Eukaryots arose after genetic ecombination. Arch. Oncol. Serbia, 14, 11- 14.
[ 34 ] STUPAR M. 2008. Nucleogenesis and origin of organelles. Arch. Oncol. Serbia, 16, 3-4, 88-92.
[ 35 ] WACHTERSHAUSER G. 1988. Before enzymes and templates: Theory of surface metabolism. Microbiological Reviews, Dec. 452-484.
[ 36 ] WACHTERSHAUSER G. 2000. Life as we don’t know it. Science 289, 1307-1308. WINCENCJUSZ Hanna, Yocum C.F., and Gorkom H.J. 1999. Activating anions that replace Cl in the O2-evolving complex of photosystem II slow kinetics of the terminal step in water oxidation and destabilize the S2 and S3 states. Biochemistry 38, 3719-3725.
[ 37 ] XIONG J. and C.E. Bauer. 2002. A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis. J. Mol.Biol. 322 (5), 1025-1037.

Submit A Manuscript
Review Manuscripts
Join As An Editorial Member
Most Views
Article
by Sergey M. Afonin
2916 Downloads 18864 Views
Article
by Syed Adil Hussain, Taha Hasan Associate Professor
2271 Downloads 15656 Views
Article
by Omprakash Sikhwal, Yashwant Vyas
2345 Downloads 14039 Views
Article
by Munmun Nath, Bijan Nath, Santanu Roy
2245 Downloads 13935 Views
Upcoming Conferences