ISSN: 2706-8870
Volume 10, Number 2 (2025)
Year Launched: 2016

A fundamental basis for all living creatures, mechanotransduction, is significantly endangered by periodic exposure to impulsive infrasound and vibration from technical emitters - in particular cardiovascular and embryological functions

Volume 10, Issue 2, April 2025     |     PP. 28-70      |     PDF (2858 K)    |     Pub. Date: June 16, 2025
DOI: 10.54647/cm321372    11 Downloads     137 Views  

Author(s)

Ursula Maria Bellut-Staeck, Affiliation: Faculty of Medicine, Dalhousie University, Halifax, NS, Canada

Abstract
Mechanotransduction is the common basis for all organisms for converting physical forces into biochemical and biological information. Ongoing PIEZO channel research confirms PIEZ0-I and II channels in numerous other tissues including outside the endothelium. The prerequisite for a inflammatory transformation of the endothelium is chronic oxidative and oscillatory stress, as vital regulatory processes depend on an uninterrupted laminar flow in the capillary system and the integrity of the endothelium. Vascular health, in turn, is closely linked to demand-driven NO bioavailability and its homeostasis.
The latest findings on a growing environmental factor show clear signs of an incompatibility between chronic and impulsive low frequencies and a fundamental information pathway of all organisms. The potentially serious consequences of an interaction, e.g., loss of endothelial integrity, increased blood pressure and tissue remodelling of the heart, reduced fertility, stranding`s and death of whales, decline in animal species and insects and reduction in plant biomass, have a common basis, which is discussed in this article: mechanotransduction. A force that is not demand-oriented can lead to irregular information.
There is an urgent need to reassess the far-reaching effects and consequences of infrasound and vibrations from technical installations such as biogas plants, heat pumps and in particular, large (250 m+) industrial wind turbines (IWT). ‘If you want to discover the secrets of the universe, think in terms of energy, frequencies and vibrations’ (quote from Tesla). Mechanotransduction is a common basis for all life and must be preserved.

Keywords
mechanotransduction, cardiovascular diseases, embryogenesis, oxidative and oscillatory stress, infrasound and vibration, endothelial integrity, NO homeostasis, PIEZO-channels, biodiversity.

Cite this paper
Ursula Maria Bellut-Staeck, A fundamental basis for all living creatures, mechanotransduction, is significantly endangered by periodic exposure to impulsive infrasound and vibration from technical emitters - in particular cardiovascular and embryological functions , SCIREA Journal of Clinical Medicine. Volume 10, Issue 2, April 2025 | PP. 28-70. 10.54647/cm321372

References

[ 1 ] Laurindo, F.R.M., Liberman, M., Fernandes, D.C. and Leite Paulo, F. Cap. 8. Endothelium-Dependent Vasodilation: Nitric Oxide and Other Mediators. In: Da Luz, P.L., Libby, P., Laurindo, F.R.M. and Chagas, A.C.P., Eds., Endothelium and Cardiovascular Diseases. Vascular Biology and Clinical Syndromes, Mica Haley, Sao Paolo,2018, 97-98
[ 2 ] Nussbaum, C.F. (2017) Neue Aspekte der Mikrozirkulation im Rahmen von Entzündung, Entwicklung und Erkrankung. Kumulative Habilitationsschrift zur Erlangung der Venia Legendi. Fach Pädiatrie. Ludwig-Maximilians-Universität München. Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital. München
[ 3 ] Sperando, M. and Brandes, R. Cap. 20. Mikrozirkulation. In: Brandes, R., Lang, F., Schmidt, R.F., Eds., Physiologie des Menschen mit Pathophysiologie, Springer, (2019) Vol. 32, 241-256.
[ 4 ] Bellut-Staeck, UM. Die Mikrozirkulation und ihre Bedeutung für alles Leben. Untertitel: Aktuelle Erkenntnisse zu lebenswichtigen Funktionen von Endothelzellen. In Series Titels: Essentials. Publisher Springer Berlin, Heidelberg; 2022. Available: https://doi.org/10.1007/978-3-662-66516-9.Softcover ISBN978-3-662-66515-2.
[ 5 ] Bellut-Staeck, U. Impairment of the Endothelium and Disorder of Microcirculation in Humans and Animals Exposed to Infrasound due to Irregular Mechano-Transduction. Journal of Biosciences and Medicines, Volume 11, 2023 30-56. Doi: 10.4236/jbm.2023.116003
[ 6 ] Durán, W.N., Sánchez, F.A., Breslin, J.W., Microcirculatory exchange function. In: Comprehensive Physiology. Program in Vascular Biology; 2011 USA.
[ 7 ] Fernandes, C.D., Araujo Thaıs, S., Laurindo, F.R.M. and Tanaka, L.Y.) Cap. 7. Hemodynamic Forces in the Endothelium. Mechanotransduction to Implications on Development of Atherosclerosis. In: Da Luz, P.L., Libby, P., Laurindo, F.R.M. and Chagas, A.C.P., Eds., Endothelium and Cardiovascular Diseases. Vascular Biology and Clinical Syndromes, Mica Haley, Sao Paolo, 2018, 85-94.
[ 8 ] Moore, P.R., Dyson, A., Singer, M. and Frazer, J. Microcirculatory Dysfunction and Resuscitation: Why, When, and How. British Journal of Anaesthesia, 115, 2015, 366- 375. https://doi.org/10.1093/bja/aev163
[ 9 ] Voets, T. and Nilius, B. TRPCs, GPCRs and the Bayliss Effect. The EMBO Journal, 28, 2009 4-5. https://doi.org/10.1038/emboj.2008.261
[ 10 ] Chien, S. Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell. The American Journal of Physiology-Heart and Circulatory Physiology, 2007, 292, H1209-H1224. https://doi.org/10.1152/ajpheart.01047.2006
[ 11 ] De Wit, C., Hoepfl, B. and Wölfle, S.E. Endothelial Mediators and Communication through Vascular Gap Junctions. Biological Chemistry, 387, 3-9. 2006, https://doi.org/10.1515/BC.2006.002
[ 12 ] De Wit, C., Wölfle, S.E. and Höpfl, B. () Connexin-Dependent Communication within the Vascular Wall: Contribution to the Control of Arteriolar Diameter. Advances in Cardiology, 2006, 42, 268-283. https://doi.org/10.1159/000092575
[ 13 ] Aalkjaer, C. and Mulvany, M.J. (2020) Structure and Function of the Microcirculation. In: Agabiti-Rosei, E., Heagerty, A.M. and Rizzoni, D., Microcirculation in Cardiovascular Diseases, Springer, Berlin, 1-14. https://doi.org/10.1007/978-3-030-47801-8_1
[ 14 ] De Backer, D., Ospina-Tascon, G., Salgado, D., Favory, R., Creteur, J. and Vincent, J. (2010) Monitoring the Microcirculation in the Critically Ill Patient: Current Methods and Future Approaches. Intensive Care Medicine, 2010, 36, 1813-1825.https://doi.org/10.1007/s00134-010-2005-3
[ 15 ] Zhang Y-Y, Li J-Z, Xie H-Q, Wang W-T, Zhao B, Jia J-M. High-resolution vasomotion analysis reveals novel arteriole physiological features and progressive modulation of cerebral vascular networks by stroke. Journal of Cerebral Blood Flow & Metabolism. 2024, Vol. 44(11) 1330–1348. DOI: 10.1177/0271678X241258576
[ 16 ] Donati, A., Damiani, E., Domizi, R., Romano, R., Adrario, E., Pelaia, P., Singer, M. Alteration of the sublingual microvascular glycocalyx in critically ill patients. Microvascular Research. 2013; 90: 86-89. Available: https://doi.org/10.1016/j.mvr.2013.08.007
[ 17 ] Pries AR. Coronary Microcirculatory Pathophysiology: Can we afford it to remain a black box? European Heart Journal. 2016; 38:478-488. Available https://doi.org/10.1093/eurheartj/ehv760
[ 18 ] Botts, S.R., Fish, J.E. and Howe, K.I. Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights into Pathogenesis and Treatment. frontiers in Pharmacology Doi: 10.3389/fphar.2021.787541
[ 19 ] Solberg, A., Rimereit, B.E., Weinbach, J.E. Leading edge erosion and pollution from wind turbine blades. The turbine group 2021. 5th edition.
[ 20 ] Hamrangsekachaee, M., Wen, K., Bencherif, S.A., Ebong, E.E. Atherosclerosis and endothelial mechanotransduction: Current knowledge and models for future research. American Journal of Physiology-Cell Physiology. 2023 Feb 1; 324(2):C488-504
[ 21 ] Pries, A.R., Coronary Microcirculatory Pathophysiology: Can we afford it to remain a black box? European Heart Journal. 2016; 38:478-488. Available: https://doi.org/10.1093/eurheartj/ehv760
[ 22 ] Augusto, O., Bonini, M.G., Amanso, A.M., Linares, E., Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radical Biology and Medicine. 2002; 32: 841-859
[ 23 ] Wink, A.A. and Mitchell, J. Chemical Biology of Nitric Oxide: Insights into Regulatory, Cytotoxic, and Cytoprotective Mechanisms of Nitric Oxide. Free Radical Biology and Medicine, 1998, 25, 434-456. https://doi.org/10.1016/S0891-5849(98)00092-6
[ 24 ] Fang1,2†, X.F., Zhou1,2†, T, Xu12, J.Q., Wang1,2, Y.W., Sun1,2, M.M., He1,2, Y.J. Pan1,2, S.W., Xiong1,2, W., Peng1,2Z.K., Gao1,2, X.H. and Shang1,2, Y. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci 2021, 11:13,https://doi.org/10.1186/s13578-020-00522-z
[ 25 ] Liu, Z., Gong, L., Li, X., et al.. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats. Molecular Medicine Reports. 2012;5: 73-77. Available: https://doi.org/10.3892/mmr.2011.597
[ 26 ] Espey, M.G., Miranda, K.M., Thomas, D.D., Miranda, K.M. and Wink, D.A. A Chemical Perspective on the Interplay between NO, Reactive Oxygen Species, and Reactive Nitrogen Oxide Species. Annals of the New York Academy of Sciences, 2002, 962, 195-206. https://doi.org/10.1111/j.1749-6632.2002.tb04068.x
[ 27 ] Guimarães Di Stasi, M., Pratschke, Acting cybernetically in architecture: Homeostasis and synergy in the work of Buckminster Fuller, Fuller RB Cybernetics and Human Knowing. 2020;27 :65-88
[ 28 ] Shimizu, Y. and Garci, J.G.N. Cap. 1. In The Endothelial Cytoskeleton. Multifunctional Role of the Endothelial Actomyosin Cytoskeleton. In: Rosado, J.A. and Redondo, P.C., Eds., Endothelial Cytoskeleton, CRC Press, Boca Raton, 2014,1-26.
[ 29 ] Wang, L. and Dudek, S.M. Regulation of Vascular Permeability by Sphingosine 1-Phosphate. Microvascular Research,2009, 77, 39-45. https://doi.org/10.1016/j.mvr.2008.09.005
[ 30 ] Lee, T.Y. and Gotlieb, A.I. Microfilaments and Microtubules Maintain Endothelial. Microscopy Research and Technique, 20360, 115-127.https://doi.org/10.1002/jemt.10250
[ 31 ] Belvitch, P., Htwe, Y.M., Brown, M.E. and Dudek, S. Cortical Actin Dynamics in Endothelial Permeability. In: Belvitch, P. and Dudek, S., Eds., Current Topics in Membranes, Elsevier, Amsterdam, 2018 141-195. https://doi.org/10.1016/bs.ctm.2018.09.003
[ 32 ] Suthahar, N., Meijers, W.C., Silljé, H. and de Boer, R. From Inflammation to Fibrosis-Molecular and Cellular Mechanisms of Myocardial Tissue Remodelling and Perspectives on Differential Treatment Opportunities. Current Heart Failure Reports, 2017,14, 235-250. https://doi.org/10.1007/s11897-017-0343-y
[ 33 ] Ley, K., Laudanna, C., Cybulsky, M.I. and Nourshargh, S. Getting to the Site of Inflammation: The Leukocyte Adhesion Cascade Updated. Nature Reviews Immunology, 7, 2007, 678-689. https://doi.org/10.1038/nri2156
[ 34 ] Serhan, C.N., Brain, S.D., Buckley, C.D., Gilroy, D.W., Haslett, C., O’Neill, L.A., Perretti, M., Rossi, A.G. and Wallace, J. Resolution of Inflammation: State of the Art, Definitions and Terms. FASEB Journal, 2007,21
[ 35 ] Nussbaum, C. and Sperando, M. Innate Immune Cell Recruitment in the Fetus and Neonate. Journal of Reproductive Immunology, 2011, 90, 74-81.https://doi.org/10.1016/j.jri.2011.01.022
[ 36 ] Nussbaum, C., Klinke, A., Matti, A., Baldus, S. and Sperando, M. Myeloperoxidase: A Leukocyte-Derived in the Resolution of Acute Inflammation. Immunity, 2013,40, 315-327
[ 37 ] Buckley, C.D., Gilroy, D.W., Charles, N. and Serhan, C.N. Pro-Resolving Lipid Mediators and Mechanisms in the Resolution of Acute Inflammation. Immunity, 2014, 40, 315-327. https://doi.org/10.1016/j.immuni.2014.02.009
[ 38 ] Bellut-Staeck, U.M. Chronic Infrasound Impact is Suspected of Causing Irregular Information via Endothelial Mechano-transduction and Far-reaching Disturbance of Vascular Regulation in All Organisms. In: Medical Research and Its Applications, Vol. 8 Chapter 5. Print: ISBN: 978-81-975566-2-3, eBook ISBN: 978-81-975566-5-4. 2024 DOI: https://doi.org/10.9734/bpi/mria/v8/727
[ 39 ] Li, B., Sharpe, E.E., Maupin, A.B. et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20: 2006,1495–1497
[ 40 ] Hahn, C., Schwartz, M.A. Mechanotransduction in vascular physiology and atherogenesis. Nature Reviews Molecular Cell Biology. 2009; 10: 53-62. Available: https://doi.org/10.1038/nrm2596
[ 41 ] Likacs, V., Mao, R., Bayrak-Toydemir, P., Procter, M., Cahalan, S., Kim, H., Bandell, M., Longo, N., Day, R., Stevenson, D., Patapoutian, A., Krock, B., Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia JO - Nature communications, 2015.PY - 2015/09/21 VL - 6. DO - 10.1038/ncomms9329
[ 42 ] Costa Pereira e Curto, T., Acquired flexural deformation of the distal interphalangeal joint in foals. Dissertation Faculty of Veterinary Medicine. 2012 Lisboa
[ 43 ] ANNICHINO-BIZZACCHI J, VINICIUS DE PAULA E. 11. Blood Coagulation and Endothelium p 147-152. Vascular Biology and Clinical Syndromes. 2018, cap 11 S. 147-152. In ENDOTHELIUM AND CARDIOVASCULAR DISEASES. Edited by PROTA´ SIO L. DA LUZ.PETER LIBBY ANTONIO C. P. CHAGAS. FRANCISCO R. M. LAURINDO ISBN 978-0-12-812348-5
[ 44 ] Mazzag B, Gouget C, Hwang Y, Barakat AI.. Mechanical force transmission via the cytoskeleton in vascular endothelial cells. Cap. 5 In: Rosado JA, Redondo PC, Eds., Endothelial Cytoskeleton, CRC Press, Boca Raton. 2014; 91-115.
[ 45 ] Mazzag B, Barakat AI. The Effect of noisy flow on endothelial cell mechanotransduction: A computational study. Annals of Biomedical Engineering. 2010; 39: 911-921.Available: https://doi.org/10.1007/s10439-010-0181-5
[ 46 ] Na, S., Collin, O., Chowdhury, F., Tay, B., Ouyang, M., Ouyang, M., Wang, Y. and Wang, N. Rapid Signal Transduction in Living Cells Is a Unique Feature of Mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6626-6631
[ 47 ] Donati, A., Damiani, E., Domizi, R., Romano, R., Adrario, E., Pelaia, P. and Singer, M. Alteration of the Sublingual Microvascular Glycocalyx in Critically Ill Patients. Microvascular Research,2013, 90, 86-89. https://doi.org/10.1016/j.mvr.2013.08.007
[ 48 ] Ernfors P, El Manira AE, Svenningsson. Discoveries of receptors for temperature and touch. Scientific background. Karolinska Institutet Nobel Prize in Physiology or Medicine 2021. Last seen: https://www.nobelprize.org/prizes/medicine/2021/advanced-information/
[ 49 ] Rode, B., Shi, J., Endesh, N., Drinkhill, P., Webster, P.J., Lotteau, S., et al. Piezo1 Channels Sense Whole Body Physical Activity to Reset Cardiovascular Homeostasis and Enhance Performance. Nature Communications, 2017, 8, Article No. 350. https://doi.org/10.1038/s41467-017-00429-3
[ 50 ] Philip, A. Gottlieb & Frederick Sachs. Piezo1, Channels, 2012, 6:4, 214-219, DOI: 10.4161/chan.21050
[ 51 ] Moroni, M., Servin-Vences MR, Fleischer, R., Sanchez-Carranza, O, Lewin, G.R. Voltage-gating of mechanosensitive PIEZO channels. Now published in Nature Communications, 2018, doi: https://doi.org/10.1038/s41467-018-03502-7
[ 52 ] Liu, H., Hu, J., Zheng, Q., Feng, X., Zhan, F., Wang, X., Xu, G. and Hua, F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front. Immunol. 13:816149.2022, Doi: 10.3389/fimmu.2022.816149
[ 53 ] Raven, P.H, Ray, F, Eichhorn Biologie der Pflanzen 4. Auflage ISBN13 978-3-11-018531-7 De Gruyter 2006
[ 54 ] Hamant1*, O. and Elizabeth S. Haswell2. E.S, Life behind the wall: sensing mechanical cues in plants. Hamant and Haswell, BMC Biology (2017) 15:59 Hamant and Haswell BMC Biology (2017) 15:59. DOI 10.1186/s12915-017-0403-5
[ 55 ] Heng Zhang,1,2, * Yang Zhao,1,3 and Jian-Kang Zhu1,4. Thriving under Stress: How Plants Balance Growth and the Stress Response. Developmental Cell. 2020.DOI: https://doi.org/10.1016/j.devcel.2020.10.012
[ 56 ] Khait,1,6,9 I., Lewin-Epstein,1,7,8,9, O., Sharon,1,2, R., Saban,1, K., Goldstein,1, R., Anikster,1, Y. Zeron,1, Y., Agassy,1, C. Nizan,1, S., Sharabi,1, G., Perelman,1, R., Boonman,3, A., Sade,1,4, N-, Yovel,3,5,10, Y., and Hadany1,5,10,11, L. * Sounds emitted by plants under stress are airborne and informative. Cell press. 2023 https://doi.org/10.1016/j.cell.2023.03.009
[ 57 ] Gao 1,6, L., Wu 2,6, Q. Jixiang Qiu 1, Mei 3*, Y., Yao 1, Y., Meng 4, L. & Liu 5, P. (2023) The impact of wind energy on plant biomass production in China. Scientific Reports | (2023) 13:22366 | https://doi.org/10.1038/s41598-023-49650-9
[ 58 ] Evans A. Environmental noise pollution: Has public health become too utilitarian? Open Journal of Social Sciences. 2017;5: 80-107. Available: https://doi.org/10.4236/jss.2017.55007
[ 59 ] Persinger A, Infrasound, human health, and adaptation: an integrative overview of recondite hazards in a complex environment. Nat Hazards. 2014 70:501–525.DOI 10.1007/s11069-013-0827-3
[ 60 ] Dumbrille, A, McMurtry, R.Y., Krogh, Marie C. Wind turbines and adverse health effects: Applying Bradford hill’s criteria for causation. Environmental Disease. 2021; 6: 65-87
[ 61 ] Pilger, C. and Ceranna, L. The Influence of Periodic Wind Turbine Noise on Infrasound Array Measurements. Journal of Sound and Vibration, 388, 2017 188-200. https://doi.org/10.1016/j.jsv.2016.10.027
[ 62 ] Roos, W. and Vahl, C.F Infraschall aus technischen Anlagen. Wissenschaftliche Grundlagen für eine Bewertung gesundheitlicher Risiken. ASU Arbeitsmed Sozialmed Umweltmed, 2021, 56, 420-430. https://doi.org/10.17147/asu-2107-7953
[ 63 ] Vanderkooy, J. and Mann, R. Measuring Wind Turbine Coherent Infrasound. (2014) Measuring Wind Turbine Coherent Infrasound. Journal of Electromagnetic Analysis and Applications Vol.1 No.2, June 25, 2009.
[ 64 ] Krahé, D., Schreckenberg, D., Ebner, F., Eulitz, C., Möhler, U. (20149 Machbarkeitsstudie zu Wirkungen von Infraschall. Entwicklung von Untersuchungsdesigns für die Ermittlung der Auswirkungen von Infraschall auf den Menschen durch unterschiedliche Quellen. Verlag Umweltbundesamt; DOI: https://www.umweltbundesamt.de/publikationen/machbarkeitsstudie-zu-irkungenvon-infraschall
[ 65 ] Eulitz; C. Zobel; P. Ost L., Möhler U., Schröder M. (2020) Ermittlung und Bewertung tieffrequenter Geräusche in der Umgebung von Wohnbebauung, TEXTE 134/2020, Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit. Forschungskennzahl 3713 53 100 FB000232
[ 66 ] Schmitter; S., Alaimo; A., Hemmer D., Schreckenberg D., Großarth; A., Pörschmann; C., Kühner; T. Noise effects of the use of land-based Wind energy, Final Report. Texte 70/2022. Ressortforschungsplan of the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection, Project Number 3717 43 110 0, Report No. FB000656/ENG.2022
[ 67 ] Murugan NJ, Karbowski LM, Lafrenie RM, Persinger MA Temporally-patterned magnetic fields induce complete fragmentation in planaria. PLOSone 2013
[ 68 ] Lurton; X. An Introduction to Underwater Acoustics, Principles and Applications. 2. Auflage. Springer/Springer Praxis Books, 2010, ISBN 3-540-78480-2
[ 69 ] Katsnelson, B., Petnikov, V., Lynch, J.F., Low-Frequency Bottom Reverberation in Shallow Water. In book: Fundamentals of Shallow Water Acoustics (pp.239-266). January 2012. DOI:10.1007/978-1-4419-9777-7_6
[ 70 ] Louisinha, A., Oliveira, R.M..J, Borrecho, G, Brito J, Oliveira P, Oliveira da Carvalho, A., et al. Infrasound induces coronary perivascular fibrosis in rats. Cardiovascular Pathology. 2018;37: 39-44. Available: https://doi.org/10.1016/j.carpath.2018.10.004
[ 71 ] Bowling, D.L. 1,2 Biological principles for music and mental health. Translational Psychiatry. 2023. 13:374; https://doi.org/10.1038/s41398-023-02671-4
[ 72 ] Pei, Z, Chen, B.Y, Tie, R., et al Infrasound exposure induces apoptosis of rat cardiac myocytes by regulating the expression of apoptosis-related proteins. Cardiovascular Toxicology. 2011;11: 341-346. Available: https://doi.org/10.1007/s12012-011-9126-y
[ 73 ] Zhang, M.Y., Chen, C, Xie. X, J, et al. Damage to Hippocampus of rats after being exposed to infrasound. Biomedical and Environmental Sciences. 2016;29: 435-442.
[ 74 ] Zhou, X, Yang, Q, Song, F., et al. Tetrahydroxystilbene glucoside ameliorates infrasound-induced central nervous system (CNS) injury by improving antioxidant and anti-inflammatory capacity. Oxidative Medicine and Cellular Longevity. 2020; Article ID: 6576718. Available: https://doi.org/10.1155/2020/6576718
[ 75 ] Chaban, R., Ghazy, A., Georgiadem E, Stumpf N, Vahl CF. Negative effect of high-level infrasound on human myocardial contractility: In vitro Controlled Experiment. Noise Health. 2021;23: 57-66
[ 76 ] Zhang H, Qi, P., Si, S.Y, Ma, W.M. Effect of infrasound on the growth of colorectal carcinoma in mouse. Chinese Journal of Cancer Prevention and Treatment. 2013; 20:1145-1149.
[ 77 ] Bittner-Mackin, E. Excerpts from the final report of the township of lincoln wind turbine moratorium committee. Zoning Board of Appeals, Bureau County; 2006. Available: http://www.aweo.org/windlincoln.html
[ 78 ] Bräuner, E.V., Jørgensen, J.T, Duun-Henriksen, A. K, Backalarz, C., Laursen, J.E., Pedersen, T.H., Simonsen, M.K, Andersen, Z.J. Long-term wind turbine noise exposure and the risk of incident atrial fibrillation in the danish nurse cohort. Environment International. 2019; 130: Article ID: 104915. Available: https://doi.org/10.1016/j.envint.2019.104915
[ 79 ] Theorell H., Vemdal M. Why Does Egg Mortality Increase Near a New Wind Industry? Published in “Svensk Veterinärtidning” No 5 June 2024 Vol. 75. DOI: https://www.svenskveterinartidning.se/wp-content/uploads/2024/06/SVT2405.pdf
[ 80 ] Alves-Pereira M, Branco C. Vibroacoustic disease: Biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling. Progress in Biophysics and Molecular Biology. 2007; 93: 256-279.DOI::https://doi.org/10.1016/j.pbiomolbio.2006.07.011 Available: http://www.sciencedirect.com/science/article/pii/S0079610706000927
[ 81 ] Branco C, Alves-Pereira M. Low-frequency noise-induced pathology: Contributions provided by the portuguese wind turbine case. Euronoise. 2015, Maastricht, 31 May-3 June 2015, 2659-2661. Available: https://www.researchgate.net/publication/290444707_Low_Frequency_Noise_ induced_Pathology_Contributions_Provided_by_the_Portuguese_Wind_Turbine_Case
[ 82 ] Ebeling M, Mühlichen M. Talback, Rau R, Goedel A, Klüsener S. Disease incidence and not case fatality drives the rural disadvantage in myocardial-infarction-related mortality in Germany. Preventive Medicine 179 (2024) 107833. 0091-7435/© 2024 The Authors. Published by Elsevier Inc. https://doi.org/10.1016/j.ypmed.2023.107833
[ 83 ] Weichenberger, M., Bauer, M., Kühler, R., et al. Altered Cortical and Subcortical Connectivity due to Infrasound Administered near the Hearing Threshold—Evidence from fMRI. PLOS ONE, 2017 12, e0174420. https://doi.org/10.1371/journal.pone.0174420
[ 84 ] Garthe, S., Schwemmer, H., Peschko, V. et al. Large-scale effects of offshore wind farms on seabirds of high conservation concern. Sci Rep 13, 4779 (2023). DOI: 10.1038/s41598-023-31601-z.9Vol.:(0123456789)Scientific Reports | (2023) 13:4779 | https://doi.org/10.1038/s41598-023-31601-zwww.nature.com/scientificreports/
[ 85 ] Davies, J.G., Boersch-Supan, P.H., Clewley, G.D. et al. Influence of wind on kittiwake Rissa tridactyla flight and offshore wind turbine collision risk. Mar Biol 171, 191 (2024). https://doi.org/10.1007/s00227-024-04508-0
[ 86 ] The Impact of Wind Farms on Suicide, Eric Zou, October 2017). http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7BE0B0D0CF-55DC-E-9133-1F441547575%7D
[ 87 ] L. Ascone1*, C. Kling3, J. Wieczorek3, C. Koch3 & S. Kühn1,2. A longitudinal, randomized experimental pilot study to investigate the effects of airborne infrasound on human mental health, cognition, and brain structure, Scientific Reports | (2021) 11:3190 | https://doi.org/10.1038/s41598-021-82203-6