Volume 5, Number 3 (2020)
Year Launched: 2016
Journal Menu
Archive
Previous Issues
Why Us
-  Open Access
-  Peer-reviewed
-  Rapid publication
-  Lifetime hosting
-  Free indexing service
-  Free promotion service
-  More citations
-  Search engine friendly
Contact Us
Email:   service@scirea.org
Home > Journals > SCIREA Journal of Materials > Archive > Paper Information

An efficient bifunctional electrocatalyst from natural cotton fibers for ORR/OER and electric field polarization effect

Volume 5, Issue 3, June 2020    |    PP. 29-70    |PDF (4329 K)|    Pub. Date: December 2, 2020
116 Downloads     683 Views  

Author(s)
Maryam Jahan, Chemistry Department, Southern University and A&M College, Baton Rouge, Louisiana, 70813, USA; Physics Department and Nano Catalysts Laboratory, Southern University and A&M College, Baton Rouge, Louisiana, 70813, USA
Kuo Li, Physics Department and Nano Catalysts Laboratory, Southern University and A&M College, Baton Rouge, Louisiana, 70813, USA
Guang-Lin Zhao, Physics Department and Nano Catalysts Laboratory, Southern University and A&M College, Baton Rouge, Louisiana, 70813, USA
Feng Gao, Physics Department and Nano Catalysts Laboratory, Southern University and A&M College, Baton Rouge, Louisiana, 70813, USA

Abstract
Developing efficient bifunctional electrocatalysts that drive both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant for renewable energy conversion and storage technologies. In this paper, we report a new method for synthesizing carbon nanostructures through catalytic thermolysis of natural cotton fibers. Pre-treated cotton with Fe annealed under ammonia gas environment at an optimized temperatures 900oC yielded nitrogen-iron doped carbon (NFe/C) with bamboo-like structures. Our experimental measurements show that NFe/C synthesized at 900oC (NFe/C (900oC)) possess good bifunctional electrocatalytic activities toward ORR and OER, with an excellent stability in alkaline electrolytes. We further studied the electric field polarization effect on NFe/C (900oC) by utilizing a DC electric field on the catalyst ink drop casted on a glassy carbon electrode. Interestingly, the applied electric field created a dielectrophoresis phenomenon that assisted the packing of the catalyst particles, and resulted in a compact catalyst electrode with an improvement of electrocatalytic performance, that have not been previously explored. The reported new synthesis method using natural cotton and the electric field polarization effect have the potential to achieve a low cost and mass production capability for producing carbon-based noble-metal-free bifunctional electrocatalysts for green energy conversions.

Keywords
natural cotton fibers; Oxygen Reduction Reaction; oxygen evolution reaction; electric field; renewable energy conversion; storage technologies

Cite this paper
Maryam Jahan, Kuo Li, Guang-Lin Zhao, Feng Gao, An efficient bifunctional electrocatalyst from natural cotton fibers for ORR/OER and electric field polarization effect, SCIREA Journal of Materials. Vol. 5 , No. 3 , 2020 , pp. 29 - 70 .

References

[ 1 ] R. Schlögl, ChemSusChem. 3 , 209-222 (2010).
[ 2 ] S. Song, H. Zhang, X. Ma, Z. Shao, R.T. Baker, B. Yi, International journal of hydrogen energy. 33, 4955-4961 (2008).
[ 3 ] S. Siracusano, V. Baglio, A. Di Blasi, N. Briguglio, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci, A. Arico, International journal of hydrogen energy. 35 , 5558-5568 (2010).
[ 4 ] Y. Zhang, C. Wang, N. Wan, Z. Mao, International Journal of Hydrogen Energy. 32, 400-404 (2007).
[ 5 ] S. Grigoriev, P. Millet, K. Dzhus, H. Middleton, T. Saetre, V. Fateev, International Journal of Hydrogen Energy. 35 ,5070-5076 (2010).
[ 6 ] J.D. Maclay, J. Brouwer, G.S. Samuelsen, International Journal of Hydrogen Energy. 31, 994-1009 (2006).
[ 7 ] F. Barbir, T. Molter, L. Dalton, International Journal of Hydrogen Energy. 30 , 351-357(2005).
[ 8 ] M.K. Debe, Nature. 486 ,43-51 (2012).
[ 9 ] S.-D. Yim, G.-G. Park, Y.-J. Sohn, W.-Y. Lee, Y.-G. Yoon, T.-H. Yang, S. Um, S.-P. Yu, C.-S. Kim, International Journal of Hydrogen Energy. 30, 1345-1350 (2005).
[ 10 ] J.-M. Hu, J.-Q. Zhang, C.-N. Cao, International Journal of Hydrogen Energy. 29 ,791-797 (2004).
[ 11 ] H. Hosono, K. Hayashi, T. Kamiya, T. Atou, T. Susaki, Science and technology of advanced materials. 12 034303 (2011).
[ 12 ] K.A. Stoerzinger, M. Risch, B. Han, Y. Shao-Horn, ACS Catalysis. 5 , 6021-6031 (2015).
[ 13 ] J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angewandte Chemie. 124 11664-11668 (2012).
[ 14 ] J. Shui, M. Wang, F. Du, L. Dai, Science advances. 1 , e1400129 (2015).
[ 15 ] S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Advanced Materials. 26, 2925-2930 (2014).
[ 16 ] X. Lu, W.-L. Yim, B.H. Suryanto, C. Zhao, Journal of the American Chemical Society. 137, 2901-2907 (2015).
[ 17 ] Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nature communications. 4 , 2390 (2013).
[ 18 ] J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nature nanotechnology. 10, 444-452 (2015).
[ 19 ] G.L. Tian, Q. Zhang, B. Zhang, Y.G. Jin, J.Q. Huang, D.S. Su, F. Wei, Advanced Functional Materials. 24 , 5956-5961 (2014).
[ 20 ] G.L. Tian, M.Q. Zhao, D. Yu, X.Y. Kong, J.Q. Huang, Q. Zhang, F. Wei, Small. 10 , 2251-2259 (2014).
[ 21 ] Y. Xie, Y. Kong, A. Soh, H. Gao, The Journal of chemical physics. 127 , 12B605 (2007).
[ 22 ] G.-L. Zhao, F. Gao, K. Li, Z. Wang, M. Jahan, Materials Science and Engineering: B. 224 ,61-68 (2017).
[ 23 ] A. Hachimi, B. Merzougui, A. Hakeem, T. Laoui, G.M. Swain, Q. Chang, M. Shao, M.A. Atieh, Journal of Nanomaterials. 16, 425 (2015).
[ 24 ] B. Warren, Physical Review. 59, 693 (1941).
[ 25 ] M. Doroodmand, S. Sobhani, A. Ashoori, Canadian Journal of Chemistry. 90 , 701-707 (2012).
[ 26 ] D.-W. Kim, K.-S. Kim, S.-J. Park, Carbon letters. 13, 157-160 (2012).
[ 27 ] D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.-K. Sham, X. Sun, S. Ye, S. Knights, Applied Surface Science. 257 , 9193-9198 (2011).
[ 28 ] S. Lim, S.-H. Yoon, I. Mochida, D.-H. Jung, Langmuir. 25 , 8268-8273 (2009).
[ 29 ] H.T. Chung, J.H. Won, P. Zelenay, Nature communications. 4 , 1922 (2013).
[ 30 ] S.P. Pal, P. Sen, Materials Research Express. 1 , 035002 (2014).
[ 31 ] S. Maldonado, K.J. Stevenson, The Journal of Physical Chemistry B. 109 , 4707-4716 (2005).
[ 32 ] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science. 323, 760-764 (2009).
[ 33 ] W. He, P. Xue, H. Du, L. Xu, M. Pang, X. Gao, J. Yu, Z. Zhang, T. Huang, International Journal of Hydrogen Energy. 42 , 4123-4132 (2017).
[ 34 ] W. Ren, F. Li, J. Chen, S. Bai, H.-M. Cheng, Chemical Physics Letters. 359 , 196-202 (2002).
[ 35 ] O.V. Kharissova, B.I. Kharisov, Rsc Advances. 4 , 30807-30815 (2014).
[ 36 ] Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, Journal of Materials Chemistry. 20 , 7491-7496 (2010).
[ 37 ] P.H. Matter, L. Zhang, U.S. Ozkan, Journal of Catalysis. 239 , 83-96 (2006).
[ 38 ] S. Kundu, T.C. Nagaiah, W. Xia, Y. Wang, S.V. Dommele, J.H. Bitter, M. Santa, G. Grundmeier, M. Bron, W. Schuhmann, The Journal of Physical Chemistry C. 113 , 14302-14310 (2009).
[ 39 ] R. Arrigo, M. Hävecker, R. Schlögl, D.S. Su, Chemical Communications. 40, 4891-4893 (2008).
[ 40 ] Y. Nie, N. Li, C. Hu, Separation and Purification Technology. 151 , 256-261 (2015).
[ 41 ] D. Qu, Carbon. 45 ,1296-1301 (2007).
[ 42 ] M. Jahan, S. Tominaka, J. Henzie, Dalton Transactions. 45, 18494-18501 (2016).
[ 43 ] Y. Gorlin, B. Lassalle-Kaiser, J.D. Benck, S. Gul, S.M. Webb, V.K. Yachandra, J. Yano, T.F. Jaramillo, Journal of the American Chemical Society. 135 , 8525-8534 (2013).
[ 44 ] Y. Gorlin, T.F. Jaramillo, Journal of the American Chemical Society. 132, 13612-13614 (2010).
[ 45 ] J. Li, G. Liu, B. Liu, Z. Min, D. Qian, J. Jiang, J. Li, Electrochimica Acta. 265 , 577-585 (2018).
[ 46 ] W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, Journal of the American Chemical Society. 137 ,1436-1439 (2015).
[ 47 ] J. Li, J. Chen, H. Wang, Y. Ren, K. Liu, Y. Tang, M. Shao, Energy Storage Materials. 8 , 49-58 (2017).
[ 48 ] Z. Li, H. Sun, L. Wei, W.-J. Jiang, M. Wu, J.-S. Hu, ACS applied materials & interfaces. 9 , 5272-5278 (2017).
[ 49 ] F. Gao, G.-L. Zhao, Z. Wang, D. Bagayoko, D.-J. Liu, Catalysis Communications. 62 , 79-82 (2015).
[ 50 ] F. Gao, G.-L. Zhao, S. Yang, ACS Catalysis. 4 , 1267-1273 (2014).
[ 51 ] H.B. Yang, J. Miao, S.-F. Hung, J. Chen, H.B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H.M. Chen, Science advances. 2 , e1501122 (2016).
[ 52 ] Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin, Journal of Materials Chemistry. 21 , 8038-8044 (2011).
[ 53 ] Y. Okamoto, Applied Surface Science. 256 , 335-341 (2009).
[ 54 ] Y. Shao, J. Sui, G. Yin, Y. Gao, Applied Catalysis B: Environmental. 79 , 89-99 (2008).
[ 55 ] H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J.-i. Ozaki, S. Miyata, Journal of Power Sources. 187 , 93-97 (2009).
[ 56 ] I.C. Man, H.Y. Su, F. Calle‐Vallejo, H.A. Hansen, J.I. Martínez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, J. Rossmeisl, ChemCatChem. 3 , 1159-1165 (2011).
[ 57 ] H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem. 2 , 724-761 (2010).
[ 58 ] M. Jahan, Q. Bao, K.P. Loh, Journal of the American Chemical Society. 134 , 6707-6713 (2012).
[ 59 ] M. Jahan, Z. Liu, K.P. Loh, Advanced Functional Materials. 23 ,5363-5372 (2013).
[ 60 ] G. Kim, Composites science and technology. 65 , 1728-1735 (2005).
[ 61 ] T.B. Jones, T.B. Jones, Electromechanics of particles, Cambridge University Press, (2005).
[ 62 ] D. Kincaid, D.R. Kincaid, E.W. Cheney, Numerical analysis: mathematics of scientific computing, American Mathematical Soc., (2009).
[ 63 ] H. Jiang, Y. Yao, Y. Zhu, Y. Liu, Y. Su, X. Yang, C. Li, ACS applied materials & interfaces. 7 , 21511-21520 (2015).
[ 64 ] M.W. Kanan, D.G. Nocera, Science. 321, 1072-1075 (2008).
[ 65 ] N.S. Lewis, D.G. Nocera, Proceedings of the National Academy of Sciences. 103 , 15729-15735 (2006).
[ 66 ] J. Yang, D.-J. Liu, N.N. Kariuki, L.X. Chen, Chemical Communications , 3, 329-331 (2008).
[ 67 ] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science. 332 , 443-447 (2011).
[ 68 ] J. Li, G. Liu, B. Liu, Z. Min, D. Qian, J. Jiang, J. Li, International Journal of Hydrogen Energy. 43, 1365-1374 (2018).
[ 69 ] P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Angewandte Chemie International Edition. 56, 610-614 (2017).
[ 70 ] N.I. Andersen, A. Serov, P. Atanassov, Applied Catalysis B: Environmental. 163 , 623-627 (2015).
[ 71 ] H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today. 11 , 601-625 (2016).
[ 72 ] T. Ma, C. Li, X. Chen, F. Cheng, J. Chen, Inorganic Chemistry Frontiers. 4 , 1628-1633 (2017).
[ 73 ] Y. Ji, L. Yang, X. Ren, G. Cui, X. Xiong, X. Sun, ACS Sustainable Chemistry & Engineering. 6 , 9555-9559 (2018).
[ 74 ] T. Liu, L. Xie, J. Yang, R. Kong, G. Du, A.M. Asiri, X. Sun, L. Chen, ChemElectroChem. 4 , 1840-1845 (2017).
[ 75 ] X. Ji, R. Zhang, X. Shi, A.M. Asiri, B. Zheng, X. Sun, Nanoscale. 10 , 7941-7945 (2018).
[ 76 ] J. Zhao, X. Li, G. Cui, X. Sun, Chemical Communications. 54 , 5462-5465 (2018).