Volume 5, Number 1 (2023)
Year Launched: 2016
Journal Menu
Previous Issues
Why Us
-  Open Access
-  Peer-reviewed
-  Rapid publication
-  Lifetime hosting
-  Free indexing service
-  Free promotion service
-  More citations
-  Search engine friendly
Contact Us
Email:   service@scirea.org
1 Rockefeller Plaza, 10th and 11th Floors, New York, NY 10020 U.S.A.
Home > Journals > SCIREA Journal of Astronomy > Archive > Paper Information

Basis on Negative Matter as Unified Dark Matter and Dark Energy

Volume 5, Issue 1, February 2023    |    PP. 1-11    |PDF (333 K)|    Pub. Date: April 10, 2023
DOI: 10.54647/astronomy160043    38 Downloads     470 Views  

Yi-Fang Chang, Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming, 650091, China

Based on Dirac negative energy, Einstein mass-energy relation and principle of equivalence, we propose the negative matter as the simplest model of unified dark matter and dark energy. All theories are known, only mass includes positive and negative. Because there is repulsion between positive matter and negative matter, so which is invisible dark matter, and repulsion as dark energy. It may explain many phenomena of dark matter and dark energy. We derive that the rotational velocity of galaxy is approximate constant. Assume that dark matter is completely the negative matter, so we may calculate an evolutional ratio between total matter and usual matter from 1 to present 11.82 or 7.88. Further, the mechanism of inflation is origin of positive-negative matters created from nothing, whose expansion is exponential due to strong interactions at small microscopic scales. The negative matter as a candidate of dark matter and dark energy is not only the simplest, and is calculable and testable.

dark matter, dark energy, negative matter, mass-energy relation, principle of equivalence, unification, calculation, test.

Cite this paper
Yi-Fang Chang, Basis on Negative Matter as Unified Dark Matter and Dark Energy, SCIREA Journal of Astronomy. Vol. 5 , No. 1 , 2023 , pp. 1 - 11 . https://doi.org/10.54647/astronomy160043


[ 1 ] Rubin, V. C. Ford, W. K. & Jr. Thonnard, N. Extended rotation curves of high-luminosity spiral galaxies. IV. Systematic dynamical properties. ApJ. 225, L107-111(1978).
[ 2 ] Binney, J. & Tremaine, S, Galactic Dynamics. Princeton University Press (1987).
[ 3 ] Van Tilburg, K. Leefer, N. Bougas, L. & Budker, D. Search for ultralight scalar dark matter with atomic spectroscopy. Phys. Rev. Lett. 115, 011802(2015).
[ 4 ] Hofmann, F. Sanders, J.S. Nandra, K. et al., 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS. A&A. 592, A112 (2016).
[ 5 ] Vermeulen, S.M. Relton, P. Grote, H. et al., Direct limits for scalar field dark matter from a gravitational-wave detector. Nature. 600, 424-428 (2021).
[ 6 ] Caldwell, R.  & Kamionkowski, M. Dark matter and dark energy. Nature. 2009, 458, 587-589(2009).
[ 7 ] Adam, R. et al. (Planck Collaboration), Planck 2015 results-I. Overview of products and scientific results. Astron & Astrophys. 594: A1-A13 (2016).
[ 8 ] Tanabashi, M. et al. Particle data group. Phys.Rev. D98,030001 (2018).
[ 9 ] Guo, Q. Hu, H. Zheng, Z. et al., Further evidence for a population of dark-matter-deficient dwarf galaxies. Nature Astronomy. 4:246-251(2020).
[ 10 ] Dirac, P.A.M. The theory of electrons and protons. Proc.Roy.Soc. A126,365-369(1930).
[ 11 ] Dirac, P.A.M. The Principles of Quantum Mechanics. Oxford. (1958).
[ 12 ] Chang, Y.-F. Negative matter, repulsion force, dark matter and inflation cosmos, Higgs mechanism. arXiv:0705.2908(2007).
[ 13 ] Chang, Y.-F. Negative matter, dark matter and theoretical test. International Review of Physics. 5(6), 340-345(2011).
[ 14 ] Chang, Y.-F. Field equations of repulsive force between positive-negative matter, inflation cosmos and many worlds. International Journal of Modern Theoretical Physics. 2(2),100-117 (2013).
[ 15 ] Chang Y.-F. Negative matter as unified dark matter and dark energy: simplest model, theory and nine tests. International Journal of Fundamental Physical Sciences. 10(4),40-54(2020).
[ 16 ] Chang, Y.-F. Development of matter and testable negative matter as unified dark matter and dark energy. Philosophy Study. 11(7):517-526(2021).
[ 17 ] Bondi, H. Negative mass in general relativity. Rev.Mod.Phys. 29,423-428(1957).
[ 18 ] Dodelson, S. Modern Cosmology. Academic Press (2003).
[ 19 ] Weinberg, S. Cosmology. Oxford University Press (2008).
[ 20 ] Perkins, D. Particle Astrophysics (Second Edition). Oxford University Press (2003).
[ 21 ] Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys.Lett. B545,23-29(2002).
[ 22 ] Massey, R. Rhodes, J. Ellis, R. et al. Dark matter maps reveal cosmic scaffolding. Nature. 445, 286-290(2007).
[ 23 ] Schuster, A. Potential matter—A holiday dream. Nature. 58,367(1898).

Submit A Manuscript
Review Manuscripts
Join As An Editorial Member
Most Views
by Sergey M. Afonin
3096 Downloads 68520 Views
by Jian-Qiang Wang, Chen-Xi Wang, Jian-Guo Wang, HRSCNP Research Team
63 Downloads 59709 Views
by Syed Adil Hussain, Taha Hasan Associate Professor
2456 Downloads 27896 Views
by Omprakash Sikhwal, Yashwant Vyas
2515 Downloads 24841 Views
by Munmun Nath, Bijan Nath, Santanu Roy
2404 Downloads 23825 Views
Upcoming Conferences